

# *TAMIBIA UNIVERSITY*

OF SCIENCE AND TECHNOLOGY

## FACULTY OF HEALTH, APPLIED SCIENCES AND NATURAL RESOURCES

#### **DEPARTMENT OF MATHEMATICS AND STATISTICS**

| QUALIFICATION: Bachelor of Science in Applied Mathematics and Statistics |                                         |  |
|--------------------------------------------------------------------------|-----------------------------------------|--|
| QUALIFICATION CODE: 35BHAM                                               | LEVEL: 8                                |  |
| COURSE CODE: ANA801S                                                     | COURSE NAME: APPLIED NUMERICAL ANALYSIS |  |
| SESSION: JULY 2022                                                       | PAPER: THEORY                           |  |
| DURATION: 3 HOURS                                                        | MARKS: 120 (to be converted to 100%)    |  |

| 2ND OPPORTUNITY/SUPPLEMENTARY EXAMINATION QUESTION PAPER |                 |  |
|----------------------------------------------------------|-----------------|--|
| <b>EXAMINERS</b>                                         | PROF S. A. REJU |  |
| MODERATOR:                                               | PROF S. MOTSA   |  |

|    | INSTRUCTIONS                                                         |
|----|----------------------------------------------------------------------|
| 1. | Attempt ALL the questions.                                           |
| 2. | All written work must be done in blue or black ink and sketches must |
|    | be done in pencils.                                                  |
| 3. | Use of COMMA is not allowed as a DECIMAL POINT.                      |

### **PERMISSIBLE MATERIALS**

1. Non-programmable calculator without a cover.

THIS QUESTION PAPER CONSISTS OF 3 PAGES (including this front page)

### QUESTION 1 [30 MARKS]

Discuss exhaustively the Romberg Method Extrapolation process to show that the nth order extrapolation employed by the method is given by:

$$I_{Improved} = \frac{4^{n}I_{More-accurate} - I_{Less \ accurate}}{4^{n} - 1}$$

### **QUESTION 2 [30 MARKS]**

(a) Define the Picard Method for solving the following Initial Value Problem (IVP)

$$\frac{dy}{dt} = y'(t) = f(t, y(t)), y(t_0) = y_0$$

and hence derive the Picard Iteration algorithm

[13]

(b) Using the Picard method, find the solution, correct to 3 decimal places, of the following  $1^{st}$  order IVP at x = 0.1

$$\frac{dy}{dx} = x + y^2$$
,  $y(0) = 1$ 

with 
$$x(0) = x_0 = 0$$
 [17]

#### **QUESTION 3 [30 MARKS]**

(a) Discuss the contrast between a quadrature rule and the adaptive rule.

[3]

(b) Consider the integral

[27]

$$\int_a^b f(x)dx = \int_1^3 e^{2x} \sin(3x)dx$$

Using the Adaptive Simpson's Method and an error  $\epsilon = 0.2$ , obtain the approximate value of the above integral (for computational ease, using where appropriate the following as done in class):

$$\frac{1}{10} \left| S(a,b) - S(a, \frac{a+b}{2}) - S(\frac{a+b}{2}, b) \right|$$

where

$$\int_{a}^{b} f(x)dx = (S(a,b) - \frac{h^{5}}{90}f^{(4)}(\xi), \ \xi \epsilon(a,b)$$

## **QUESTION 4 [30 MARKS]**

(a) (i) State the Steepest Descent Algorithm

[6]

- (ii) State the theorem that guarantees that the Steepest Descent method ensures some progress in the direction of the minimum of the objective function during each iteration. [4]
- (b) Using the Steepest Descent Method, obtain the minimum of the following function:

$$f(x,y) = 4x^2 - 4xy + 2y^2$$

[20]

**END OF QUESTION PAPER** 

**TOTAL MARKS = 120**